


# Migration of the MERIS FUB Coastal Water Processor to Sentinel-3 OLCI

Schroeder T., Schaale M., Lovell J. Blondeau-Patissier D., Boadle D., and Baker B. 7-9 May 2019 S3VT meeting, ESA-ESRIN, Frascati (Rome), Italy

CSIRO OCEANS & ATMOSPHERE www.csiro.au Freie Universität

# **This presentation**

- Brief recap of FUB algorithm approach from MERIS to S3
- S3 validation
- New plug-in features eVT filter, pixel-based uncertainties
- TBDs
- Updates from the Lucinda Jetty Coastal Observatory
- Summary & Outlook





### Very brief FUB algorithm recap

#### Approach:

*Inverse modeling of coupled ocean-atmosphere radiative transfer simulations using artificial neural networks (ANNs).* 

International Journal of Remote Sensing Vol. 28, No. 24, 20 December 2007, 5627–5632

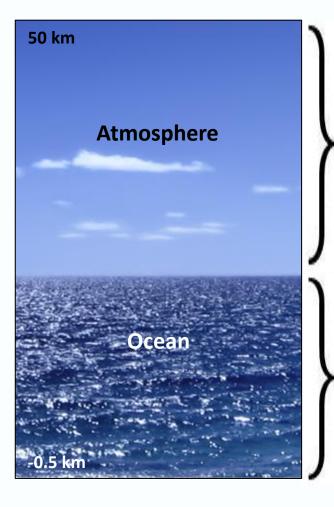


#### Retrieval of atmospheric and oceanic properties from MERIS measurements: A new Case-2 water processor for BEAM

TH. SCHROEDER\*†‡, M. SCHAALE† and J. FISCHER† †Free University Berlin, Institute for Space Sciences, Berlin, Germany ‡CSIRO Land & Water, Environmental Remote Sensing Group, Canberra, Australia

Atmospheric correction algorithm for MERIS above case-2 waters

TH. SCHROEDER\*<sup>†</sup>, I. BEHNERT<sup>‡</sup>, M. SCHAALE<sup>†</sup>, J. FISCHER<sup>†</sup> and R. DOERFFER<sup>‡</sup>


†Free University Berlin, Institute for Space Sciences, Berlin, Germany ‡GKSS Research Centre, Institute for Coastal Research, Geesthacht, Germany §CIMEL Electronique, Paris, France





### Forward model

Coupled ocean-atmosphere radiative transfer model, matrix-operator method (FUB). Simulates the upward radiance field (TOA & BOA) for a variety of different Sun and observing geometries depending on the concentration of different types of atmospheric and oceanic constituents.



- Vertical profile (US-Standard)
- Ozone (344 DU)
- Rayleigh (980hPa, 1040hPa)
- Aerosols (8-Types)
- Optical depths (5)
- Single scattering albedos
- Phase functions
- Vertical homogenous mixing of CHL, TSM, YEL
- No bottom-up effects (optically deep water)
- Phase functions
- $a=a_w+a_{p1}(CHL)+a_{p2}(TSM)+a_y(YEL)$
- b=b<sub>w</sub>+b<sub>p1+p2</sub>(TSM)

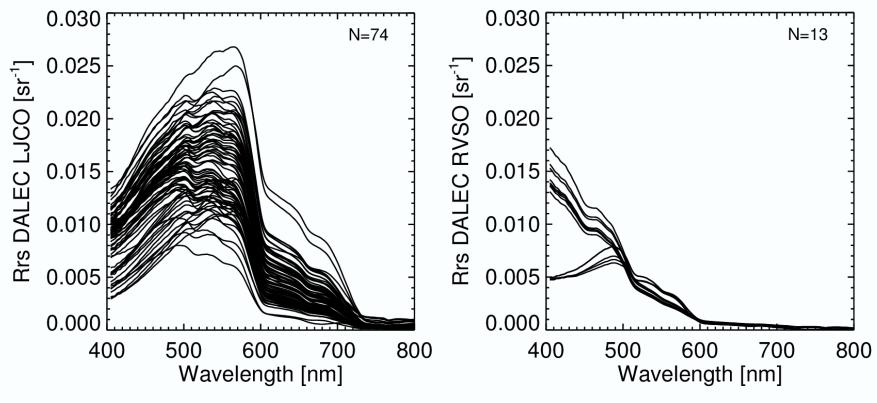
#### **Inverse model**

- MERIS 4 ANNs (1 ATMCOR + 3 WQ retrieval) Sentinel-3 now 20 ANNs (4 x 5)
- Used MERIS LUT for S3 but extended the viewing geometry
- Task of the ANNs is to perform **non-linear function approximation**
- Networks free parameters (weights) are adapted during a supervised learning procedure
- ANN advantage: Universal function approximator, fast, can be robust against input errors (noise)
- ANN disadvantage: No analytical method to derive optimum network architecture, under-fitting, over-fitting ...
- **Train various networks** by varying the number of hidden layer neurons & account for different transformations (PCA), input noise levels
- Optimum architecture is assessed through validation against "real-world" (in-situ) data





#### **S3 radiometric validation – hyper-spectral DALEC** Fixed platform deployments (LJCO) and transects (AIMS RV Solander)


3 Zeiss MMS1 UV-VIS NIR spectrometer (Lu, Lsky, Ed) 400-1050 nm, 256 bands, 16 bit ADC Motorized azimuth control, integrated GPS, roll pitch and heading







#### **DALEC spectra matching S3A at ΔT±30 min, N=87** Fixed platform deployments (LJCO) and transects (AIMS RV Solander)



Mix of coastal and open ocean waters



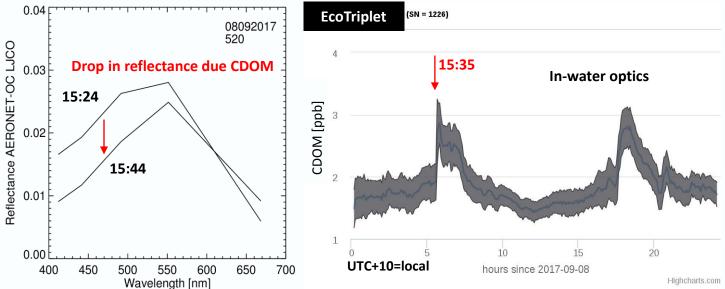


#### Match-ups extractions and additional QC Radiometry

**IPF:**  $OL_1 \ge 6.07$ ,  $OL_2 \ge 6.11$ **Processing Baseline:**  $\ge 2.23$ 

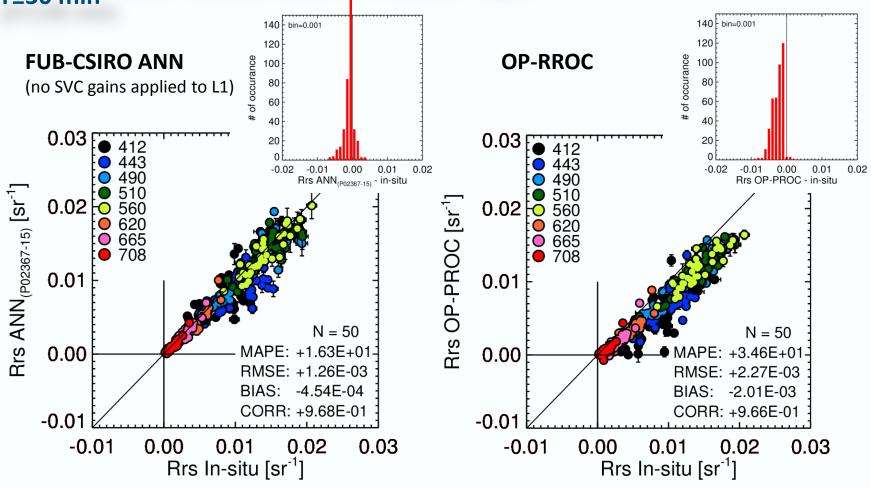
L1 flags: land, coastline, bright, straylight\_risk, invalid, sun\_glint\_risk L2 flags: AC\_fail NN\_flags: min/max I/O ranges (convexity test)

**Match area:** 3x3 no flags raised **Time difference**:  $\Delta T = \pm 30$  min – strong tidal gradients at LJCO Standard deviation within match-up area lower 40% of median Visual inspection of RGB macro region – filtering scattered clouds and haze

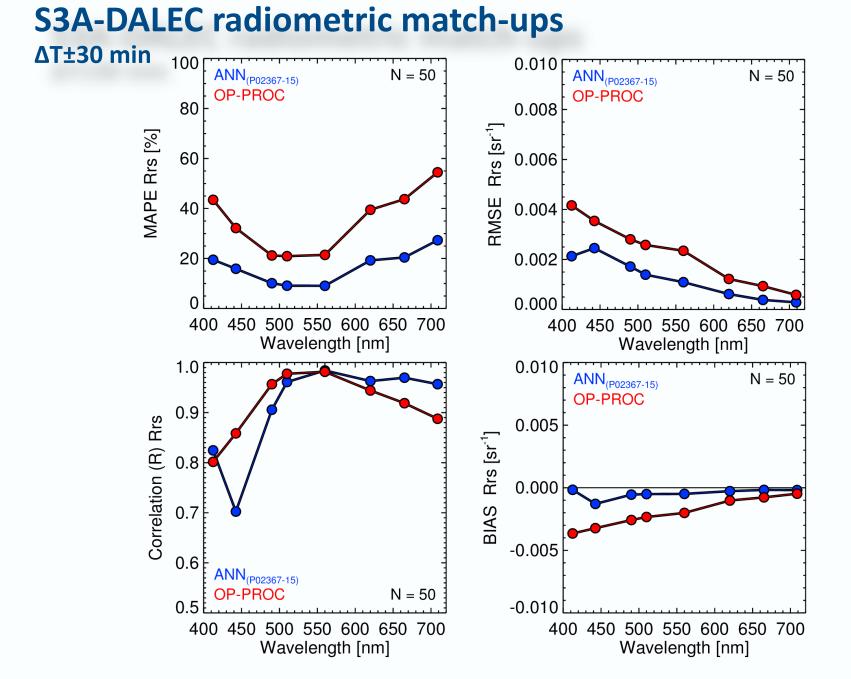

Finally N=50 high quality match-ups within ±30 min to S3A



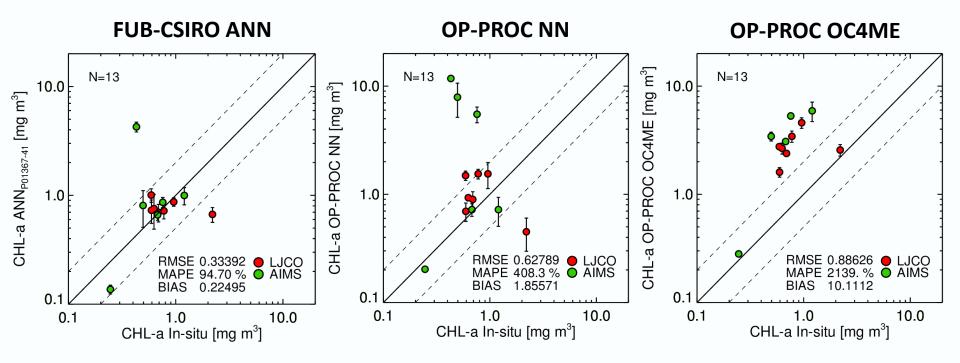
## **Tidal fronts at LJCO**


Large spectral changes within 2 subsequent SeaPRISM observations possible



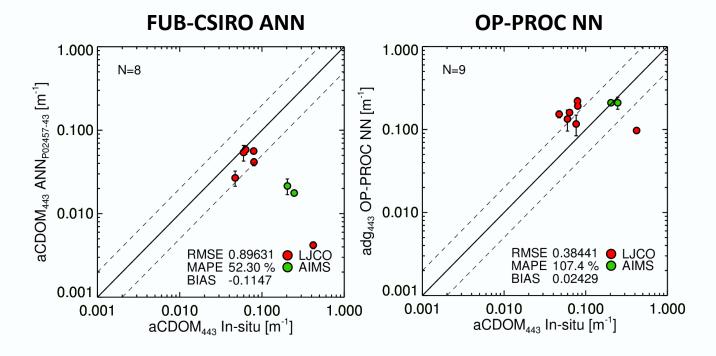



## S3A-DALEC radiometric match-ups


ΔT±30 min

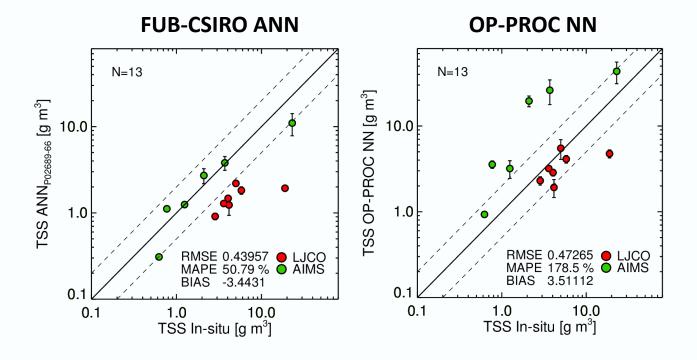







#### S3A water quality match-ups – Chl-a ΔT±30 min




Same QC as for radiometry plus L2 flags: AC\_fail, OC4ME\_fail, OCNN\_fail **Very preliminary – more data required** 

# S3A water quality match-ups – aCDOM <sub>443</sub> agd <sub>443</sub> ΔT±30 min



Very preliminary – more data required

# S3A water quality match-ups – TSS ΔT±30 min



Very preliminary – more data required

#### **New plug-in features**

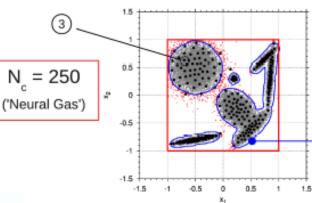




#### Simulated data space not filled completely

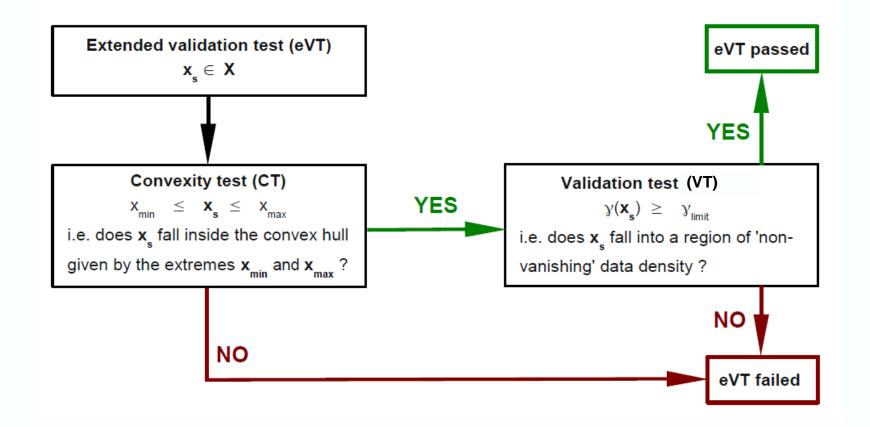
Data (density) validation test (VT)

Improved out-of-scope detection


- Approximation of data density by a kernel density estimator (1D normalized Gaussian kernels)
- Kernel centers are estimated from a vector quantization algorithm
- Spread of centers estimated by nearest neighbor heuristics
- Cut off density estimated from 2% quantile of the integrated training data's density histogram

Schaale M., Schroeder T., (2013), "An extended validation test for data input into parameterized retrieval algorithms" AIP Conf. Proc., 1531, 951, DOI:10.1063/1.4804929

S3 Validation Team Meeting, 7-9 May 2019, Frascati (Rome), Italy


Berlin

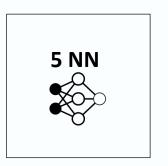
Freie Universität





#### Extended validation test (eVT) = CT + VT Improved out-of-scope detection







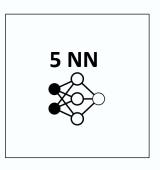

# Error bar estimates on a pixel-by-pixel basis

3 sources of uncertainty accounted for and estimated

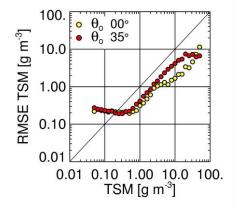
#### **1. Inverse model variance**



Estimation of the inherent model uncertainty requires computation of the Hessian matrix (2<sup>nd</sup> derivative of the ANN with respect to the weights) – computationally very demanding job.


More pragmatic approach averaging multiple ANNs of same architecture but trained with a different random seed initializing the network weights. Different starting conditions = different local minima.





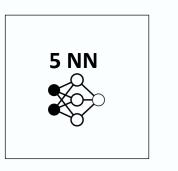

#### **Error bar estimates on a pixel-by-pixel basis** 3 sources of uncertainty accounted for and estimated

**1. Inverse model variance** 

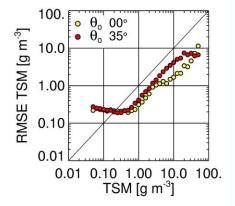


#### 2. Prediction variance

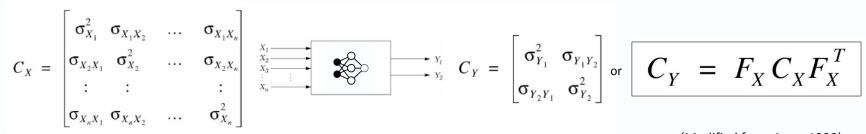



*Estimated from a recall with unlearnt LUT data (100.000 samples) for each ANN ensemble.* 

Conservative estimate as the retrieval error for a given concentration or reflectance interval (bin) corresponds to a very wide range of atmospheric and oceanic conditions.




#### **Error bar estimates on a pixel-by-pixel basis** 3 sources of uncertainty accounted for and estimated


1. Inverse model variance







3. Instrument noise variance (Averaged SNRs: EUM/OPS-SEN3/MAN/17/907205)



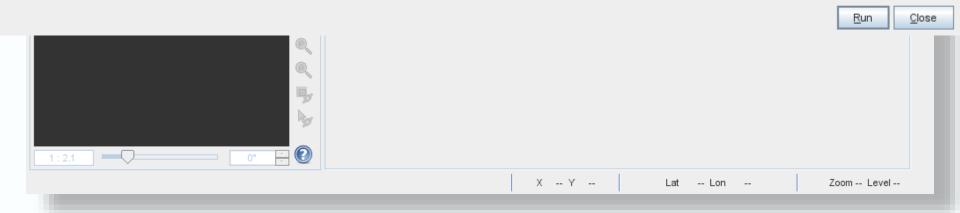
(Modified from Arras 1998)

First order error propagation. Calculate the contribution of an input error e.g. covariance matrix (Cx) describing instrument noise (SNR) to the output variance by utilizing the network Jacobian matrix (Fx).

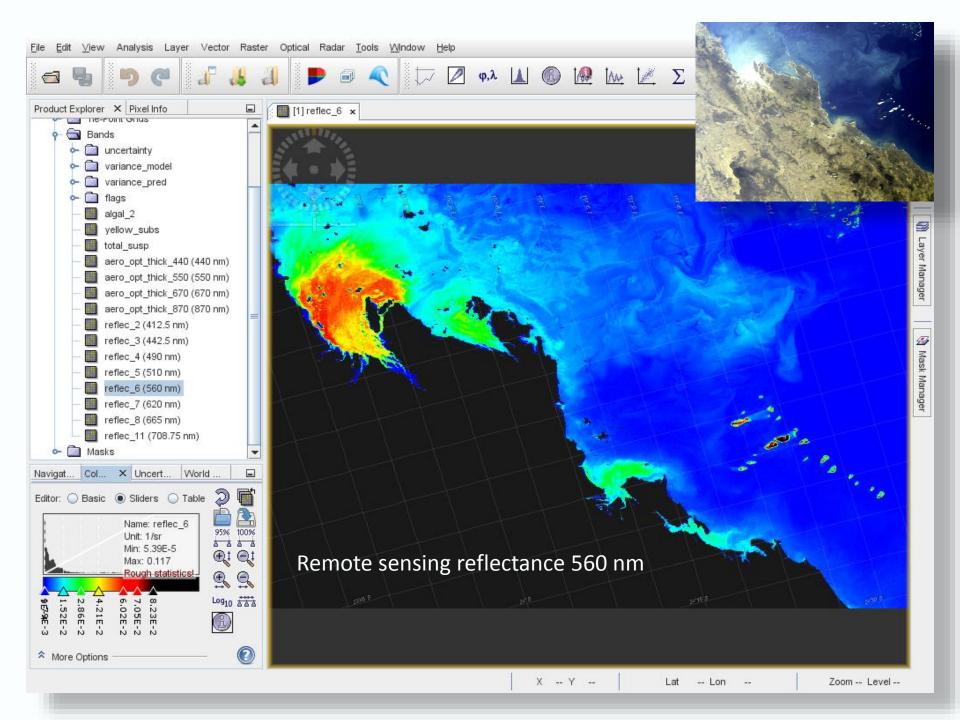
#### Integration into SNAP (as a Python module)

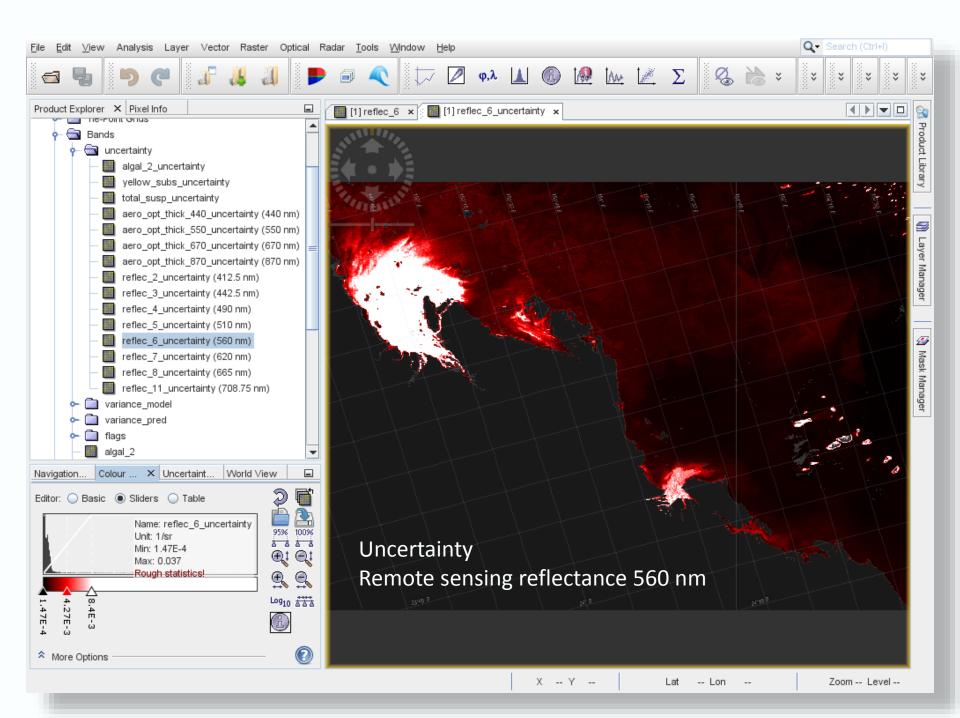


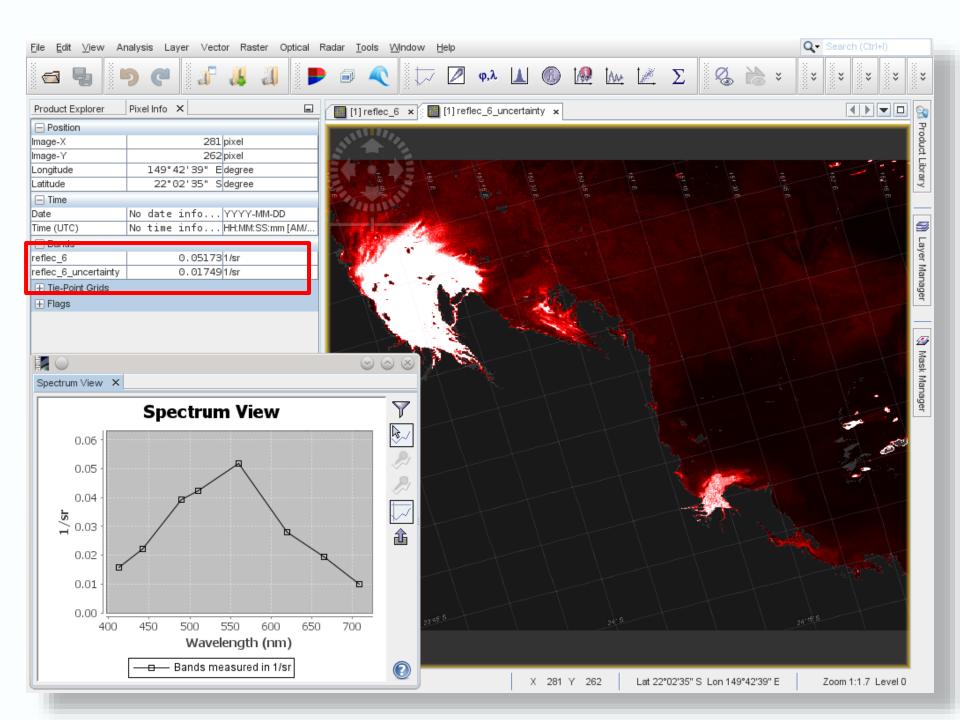





| File Edit View Analysis Layer Vector L | Optical Radar <u>T</u> ools <u>W</u> indov                                                   | v <u>H</u> elp                                    | Q Search (Ctrl+I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| File Edit View Analysis Layer Vector   | Spectrum View<br>Spectral Unmixing<br>Geometric<br>Preprocessing<br>Thematic Land Processing | 7 🖉 φ,λ 🔔 🛞                                       | Image: Search (Ctrl+l)         Image: Imag |
| Navigat × Colour Ma Uncertaint World   | l View                                                                                       |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1:2.1                                  |                                                                                              | and alone processor will porated into the new plu |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |


| <u>F</u> ile <u>E</u> dit <u>∨</u> iew Analysis Layer ∨ector Raster | Optical Radar Tools Window  | <u>H</u> elp                      | Q Search (Ctrl+l) |
|---------------------------------------------------------------------|-----------------------------|-----------------------------------|-------------------|
| a 🖣 🦻 🥐 🔏 🕹                                                         | 🔛 Spectrum View             | 7 🖉 q,2 IAI 🙉 tAD tau tau 🗴 🖸 🖄 🗸 | * * * * * *       |
|                                                                     | Spectral Unmixing           |                                   |                   |
| Product Explorer 🗙 Pixel Info                                       | Geometric                   | Requires L1 FR/RR as input        | Q2                |
|                                                                     | Preprocessing •             |                                   | 2                 |
|                                                                     | Thematic Land Processing    |                                   | Product           |
|                                                                     | Thematic Water Processing 🕨 | FUB-CSIRO Coastal Water Processor |                   |
|                                                                     |                             | (A)ATSR SST Processor             | Librar            |
|                                                                     |                             | ABO COT Dessesses                 | 131               |

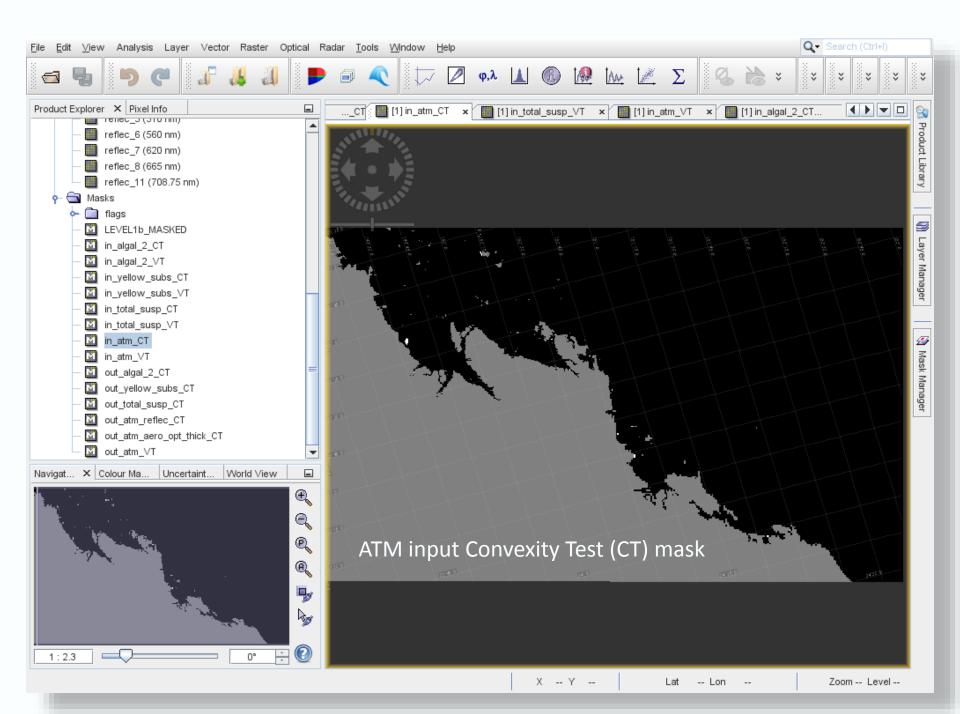

#### File Help


| I/O Parameters Processing Parameters                                                                                                                                                       |               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Compute chlorophyll-a concentration                                                                                                                                                        |               |
| Compute yellow substance absorption @443 nm                                                                                                                                                |               |
| Compute total suspended matter concentration                                                                                                                                               |               |
| Compute spectral RS(0+) reflectances and spectral AOT                                                                                                                                      |               |
| Compute sensor's noise contribution to output variance (increases computation time significantly!)                                                                                         |               |
| Perform validation test (VT)                                                                                                                                                               |               |
| Pixel pre-masking expression to be used (MERIS): 11_flags.GLINT_RISK or 11_flags.LAND_OCEAN or 11_flags.BRIGHT or 11_flags.COASTLINE or 11_flags.INVALID or 11_flags.SUSPE                 | CT            |
| Pixel pre-masking expression to be used (OLCI): quality_flags.sun_glint_risk or quality_flags.land or quality_flags.bright or quality_flags.coastline or quality_flags.invalid or quality_ | flags.dubious |
|                                                                                                                                                                                            |               |
|                                                                                                                                                                                            |               |



| <u>F</u> ile <u>E</u> dit <u>V</u> iew Analysis | Layer Vector Raster Optical Radar Tools Window Help                                                                                                         | ı (Ctrl+l)        |
|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| a 🖥 🦻 🕻                                         | Spectral Unmixing                                                                                                                                           | * * * *           |
| Product Explorer × Pixel Inf                    | Geometric     Preprocessing       Thematic Land Processing     Thematic Water Processor       Thematic Water Processing   FUB-CSIRO Coastal Water Processor | S Product Library |
|                                                 | File Help                                                                                                                                                   | orary             |
|                                                 | I/O Parameters Processing Parameters                                                                                                                        | - 9               |
|                                                 | Compute chlorophyll-a concentration                                                                                                                         | Layer Manager     |
|                                                 | Compute yellow substance absorption @443 nm                                                                                                                 | iger              |
|                                                 | Compute total suspended matter concentration                                                                                                                |                   |
|                                                 | Compute spectral RS(0+) reflectances and spectral AOT                                                                                                       | Mask N            |
|                                                 | Compute sensor's noise contribution to output variance (increases computation time significantly!)                                                          | Mask Manager      |
|                                                 | ✓ Perform validation test (∨T)                                                                                                                              |                   |
| United N Orley U                                | Pixel pre-masking expression to be used (MERIS): 11_flags.GLINT_RISK or 11_flags.LAND_OCEAN or 11_fl                                                        | а                 |
| Navigat × Colour Ma                             | Pixel pre-masking expression to be used (OLCI): quality_flags.sun_glint_risk or quality_flags.land or qua                                                   | di                |
|                                                 |                                                                                                                                                             |                   |
|                                                 |                                                                                                                                                             |                   |
|                                                 |                                                                                                                                                             |                   |
|                                                 |                                                                                                                                                             |                   |
| 1:2.1                                           |                                                                                                                                                             |                   |
| · · · · · ·                                     | X Y Lat Lon Zoom                                                                                                                                            | Level             |








Q ▼ Search (Ctrl+I)

| 🖴 🆫 🦻 🦿 🕼 👪 🕨                                                                            | 🛡 🔍 🗁 🖉 🐢 🔝 🚳 🎰 🔛 🖉                                                       | * * *      | *               |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------------|-----------------|
| Product Explorer × Pixel Info                                                            | r Mask Manager                                                            | * × •      | 8               |
| P Bands                                                                                  | 🔹 🐼 Name Type Colour Trans Description                                    | f(x) [x]   | Pro             |
|                                                                                          | quality_fl Maths 0.5 quality_flags.saturated_Oa08                         |            | duc             |
| algal 2 uncertainty                                                                      | quality_fl Maths 0.5 quality_flags.saturated_Oa09                         |            | Ϊij             |
| yellow_subs_uncertainty                                                                  | quality_fl Maths 0.5 quality_flags.saturated_Oa10                         | ի արերի    | Product Library |
| - total_susp_uncertainty                                                                 | quality_fl Maths 0.5 quality_flags.saturated_Oa11                         |            |                 |
| - 🛄 aero_opt_thick_440_uncertainty (440 nm)                                              | quality_fl Maths 0.5 quality_flags.saturated_0a12                         |            |                 |
| - 📰 aero_opt_thick_550_uncertainty (550 nm)                                              | quality_fl Maths 0.5 quality_flags.saturated_Oa13                         |            | 9               |
| aero_opt_thick_670_uncertainty (670 nm) 😑                                                | quality_fl Maths 0.5 quality_flags.saturated_Oa14                         | <b>B D</b> | aye             |
| aero_opt_thick_870_uncertainty (870 nm)                                                  | quality_fl Maths 0.5 quality_flags.saturated_0a15                         |            | er Ma           |
| reflec_2_uncertainty (412.5 nm)                                                          | quality_fl Maths 0.5 quality_flags.saturated_Oa16                         | - 🛄 🔍      | Layer Manager   |
| reflec_3_uncertainty (442.5 nm)                                                          | quality_fl Maths 0.5 quality_flags.saturated_0a17                         | - 🛛 🚣 🗋    | je.             |
| <ul> <li>reflec_4_uncertainty (490 nm)</li> <li>reflec_5_uncertainty (510 nm)</li> </ul> | quality_fl Maths 0.5 quality_flags.saturated_Oa18                         | - Q+       |                 |
| - Enceuncertainty (560 nm)                                                               | quality_fl Maths 0.5 quality_flags.saturated_0a19                         |            | <b>3</b>        |
| reflec_7_uncertainty (620 nm)                                                            | quality_fl Maths 0.5 quality_flags.saturated_0a20                         |            | M               |
| reflec_8_uncertainty (665 nm)                                                            | quality_fl Maths 0.5 quality_flags.saturated_0a21                         |            | 1 sk            |
| reflec_11_uncertainty (708.75 nm)                                                        | LEVEL1b Maths 0.5 Pixel was a priori masked out                           |            | Mask Manager    |
| 🗠 🚞 variance_model                                                                       | in_algal_2Maths 0.5 algal_2 retrieval failure (CT/input)                  |            | ager            |
| 🗠 🧰 variance_pred                                                                        | in_algal_2Maths 0.5 algal_2 retrieval failure (VT/input)                  |            |                 |
| 🕶 🛄 flags                                                                                | in_yellow Maths 0.5 yellow_subs retrieval failure (CT/input)              |            |                 |
| algal_2                                                                                  | in_yellow Maths 0.5 yellow_subs retrieval failure (VT/input)              |            |                 |
| Navigat × Colour Ma Uncertaint World View                                                | in_total_s Maths 0.5 total_susp retrieval failure (CT/input)              |            |                 |
|                                                                                          | in_total_s Maths 0.5 total_susp retrieval failure (VT/input)              | . =        |                 |
|                                                                                          | in_atm_CT_Maths 0.5 Atmospheric correction failure (CT/input)             |            |                 |
|                                                                                          | in_atm_VT Maths 0.5 Atmospheric correction failure (VT/input)             |            |                 |
|                                                                                          |                                                                           |            |                 |
|                                                                                          |                                                                           | -          |                 |
|                                                                                          | out_yello Maths 0.5 yellow_subs retrieval failure (CT/output)             | -          |                 |
|                                                                                          | out_total Maths 0.5 total_susp retrieval failure (CT/output)              |            |                 |
|                                                                                          | out_atm_rMaths 0 Atmospheric correction failure - reflec part (CT/output) |            |                 |
|                                                                                          | out_atm Maths 0.5 Atmospheric correction failure - aot part (CT/output)   |            |                 |
|                                                                                          | O.5 Atmospheric correction failure (VT/output)                            |            |                 |
|                                                                                          |                                                                           |            |                 |

X -- Y -- Lat -- Lon --



|                |                                           |                | Search:                                           |   |
|----------------|-------------------------------------------|----------------|---------------------------------------------------|---|
| Select         | Name                                      | Categ          |                                                   |   |
|                | Intent API                                | Libraries      | FUB-CSIRO Coastal Water Processor                 |   |
|                | Sentinel-2 Toolbox Land Cover Provi       | .org.esa.s2tb: | bx 📀                                              |   |
|                | Sentinel-2 Toolbox Generic Region         | org.esa.s2tb:  | bx 📀 Version: 1.0.0.0.5.0                         |   |
|                | PROBA-V Toolbox Kit Module                | PROBA-V To     | oolbox Source: s3tbx-py-tub-water-1.0.0.0.5.0.nbm |   |
|                | Radarsat-2 Polarimetric Toolkit Module    | Radarsat       | T                                                 |   |
|                | RCP Platform                              | RCP Plate      | FUB-CSIRO Coastal Water Processor                 |   |
|                | Sentinel-1 Toolbox Kit Module             | Sentinei-      |                                                   |   |
|                | Sentinel-2 Toolbox Kit Module             | Sentinel-      |                                                   |   |
|                | Sentinel-3 Toolbox Kit Module             | Sentinel-      | Manajam 4 0 0 0 5 0                               |   |
|                | SMOS-Box Kit Module                       |                | Version: 1.0.0 0.5.0                              |   |
|                | SNAP Desktop Rich Client Platform         | SNAP De        | Source: satbx-py-tab-water-1.0.0.0.5.0.nbm        |   |
|                | SNAP Engine Kit Module                    | SNAP En        |                                                   |   |
|                | FUB-CSIRO Coastal Water Processor         | SNAP-Extens    | isions 🔍 👔                                        |   |
|                |                                           |                |                                                   |   |
|                |                                           | _              |                                                   |   |
|                |                                           | Algorit        | thm version Plug in version                       | - |
|                |                                           | Algorit        | thm version Plug-in version                       |   |
|                |                                           | Algorit        | thm version Plug-in version                       |   |
|                |                                           | Algorit        | thm version Plug-in version                       |   |
|                |                                           | Algorit        | thm version Plug-in version                       |   |
|                |                                           | Algorit        | thm version Plug-in version                       |   |
|                |                                           | Algorit        | ithm version Plug-in version                      |   |
| 0 -11          |                                           |                | thm version Plug-in version                       |   |
| <u>A</u> ctiva | ate <u>D</u> eactivate U <u>n</u> install |                | thm version Plug-in version                       |   |
| <u>A</u> ctiva | ate <u>D</u> eactivate U <u>n</u> instal  |                | thm version Plug-in version                       |   |

### **TBDs before public release**

SNAP installation does not provide working Python bridge

Separate uncertainty outputs for Rrs and AOT<sup>\*)</sup> to enable combined spectrum view plotting of product and corresponding error

Provide WQ outputs on linear scale to enable easier interpretation of error bars

\*) **AOT product not validated** – recommended not to be used for algorithm version 1.0.0 – will be replaced by a separate ANN



Lucinda Jetty Coastal Observatory New instrumentation – Satlantic hyper-spectral system Installation June 2019

EKO STR-210

### **Summary & outlook**

- FUB processor successfully ported to S3 SNAP
- Robust validation of radiometry good performance compared to OP-PROC
- Further validation in pipeline using Aeronet-OC (collab. ACRI)
- Number of WQ match-ups insufficient preliminary results
- Pixel-by-pixel uncertainties and improved out-of-scope detection will lead to increased data confidence
- In-situ data sharing important to improve algorithms
- All our data available to S3VT and the public (portal.aodn.org.au)

## Acknowledgements

EUMETSAT Copernicus Collaborative Exchange Program







Dr Thomas Schroeder CSIRO Oceans & Atmosphere Brisbane, Australia

Thomas.Schroeder@csiro.au

